時間複雜度¶
執行時間可以直觀且準確地反映演算法的效率。如果我們想準確預估一段程式碼的執行時間,應該如何操作呢?
- 確定執行平臺,包括硬體配置、程式語言、系統環境等,這些因素都會影響程式碼的執行效率。
- 評估各種計算操作所需的執行時間,例如加法操作
+
需要 1 ns ,乘法操作*
需要 10 ns ,列印操作print()
需要 5 ns 等。 - 統計程式碼中所有的計算操作,並將所有操作的執行時間求和,從而得到執行時間。
例如在以下程式碼中,輸入資料大小為 \(n\) :
根據以上方法,可以得到演算法的執行時間為 \((6n + 12)\) ns :
但實際上,統計演算法的執行時間既不合理也不現實。首先,我們不希望將預估時間和執行平臺繫結,因為演算法需要在各種不同的平臺上執行。其次,我們很難獲知每種操作的執行時間,這給預估過程帶來了極大的難度。
統計時間增長趨勢¶
時間複雜度分析統計的不是演算法執行時間,而是演算法執行時間隨著資料量變大時的增長趨勢。
“時間增長趨勢”這個概念比較抽象,我們透過一個例子來加以理解。假設輸入資料大小為 \(n\) ,給定三個演算法 A
、B
和 C
:
// 演算法 A 的時間複雜度:常數階
function algorithm_A(n: number): void {
console.log(0);
}
// 演算法 B 的時間複雜度:線性階
function algorithm_B(n: number): void {
for (let i = 0; i < n; i++) {
console.log(0);
}
}
// 演算法 C 的時間複雜度:常數階
function algorithm_C(n: number): void {
for (let i = 0; i < 1000000; i++) {
console.log(0);
}
}
// 演算法 A 的時間複雜度:常數階
fn algorithm_A(n: usize) void {
_ = n;
std.debug.print("{}\n", .{0});
}
// 演算法 B 的時間複雜度:線性階
fn algorithm_B(n: i32) void {
for (0..n) |_| {
std.debug.print("{}\n", .{0});
}
}
// 演算法 C 的時間複雜度:常數階
fn algorithm_C(n: i32) void {
_ = n;
for (0..1000000) |_| {
std.debug.print("{}\n", .{0});
}
}
下圖展示了以上三個演算法函式的時間複雜度。
- 演算法
A
只有 \(1\) 個列印操作,演算法執行時間不隨著 \(n\) 增大而增長。我們稱此演算法的時間複雜度為“常數階”。 - 演算法
B
中的列印操作需要迴圈 \(n\) 次,演算法執行時間隨著 \(n\) 增大呈線性增長。此演算法的時間複雜度被稱為“線性階”。 - 演算法
C
中的列印操作需要迴圈 \(1000000\) 次,雖然執行時間很長,但它與輸入資料大小 \(n\) 無關。因此C
的時間複雜度和A
相同,仍為“常數階”。
相較於直接統計演算法的執行時間,時間複雜度分析有哪些特點呢?
- 時間複雜度能夠有效評估演算法效率。例如,演算法
B
的執行時間呈線性增長,在 \(n > 1\) 時比演算法A
更慢,在 \(n > 1000000\) 時比演算法C
更慢。事實上,只要輸入資料大小 \(n\) 足夠大,複雜度為“常數階”的演算法一定優於“線性階”的演算法,這正是時間增長趨勢的含義。 - 時間複雜度的推算方法更簡便。顯然,執行平臺和計算操作型別都與演算法執行時間的增長趨勢無關。因此在時間複雜度分析中,我們可以簡單地將所有計算操作的執行時間視為相同的“單位時間”,從而將“計算操作執行時間統計”簡化為“計算操作數量統計”,這樣一來估算難度就大大降低了。
- 時間複雜度也存在一定的侷限性。例如,儘管演算法
A
和C
的時間複雜度相同,但實際執行時間差別很大。同樣,儘管演算法B
的時間複雜度比C
高,但在輸入資料大小 \(n\) 較小時,演算法B
明顯優於演算法C
。對於此類情況,我們時常難以僅憑時間複雜度判斷演算法效率的高低。當然,儘管存在上述問題,複雜度分析仍然是評判演算法效率最有效且常用的方法。
函式漸近上界¶
給定一個輸入大小為 \(n\) 的函式:
設演算法的操作數量是一個關於輸入資料大小 \(n\) 的函式,記為 \(T(n)\) ,則以上函式的操作數量為:
\(T(n)\) 是一次函式,說明其執行時間的增長趨勢是線性的,因此它的時間複雜度是線性階。
我們將線性階的時間複雜度記為 \(O(n)\) ,這個數學符號稱為大 \(O\) 記號(big-\(O\) notation),表示函式 \(T(n)\) 的漸近上界(asymptotic upper bound)。
時間複雜度分析本質上是計算“操作數量 \(T(n)\)”的漸近上界,它具有明確的數學定義。
函式漸近上界
若存在正實數 \(c\) 和實數 \(n_0\) ,使得對於所有的 \(n > n_0\) ,均有 \(T(n) \leq c \cdot f(n)\) ,則可認為 \(f(n)\) 給出了 \(T(n)\) 的一個漸近上界,記為 \(T(n) = O(f(n))\) 。
如下圖所示,計算漸近上界就是尋找一個函式 \(f(n)\) ,使得當 \(n\) 趨向於無窮大時,\(T(n)\) 和 \(f(n)\) 處於相同的增長級別,僅相差一個常數項 \(c\) 的倍數。
推算方法¶
漸近上界的數學味兒有點重,如果你感覺沒有完全理解,也無須擔心。我們可以先掌握推算方法,在不斷的實踐中,就可以逐漸領悟其數學意義。
根據定義,確定 \(f(n)\) 之後,我們便可得到時間複雜度 \(O(f(n))\) 。那麼如何確定漸近上界 \(f(n)\) 呢?總體分為兩步:首先統計操作數量,然後判斷漸近上界。
第一步:統計操作數量¶
針對程式碼,逐行從上到下計算即可。然而,由於上述 \(c \cdot f(n)\) 中的常數項 \(c\) 可以取任意大小,因此操作數量 \(T(n)\) 中的各種係數、常數項都可以忽略。根據此原則,可以總結出以下計數簡化技巧。
- 忽略 \(T(n)\) 中的常數項。因為它們都與 \(n\) 無關,所以對時間複雜度不產生影響。
- 省略所有係數。例如,迴圈 \(2n\) 次、\(5n + 1\) 次等,都可以簡化記為 \(n\) 次,因為 \(n\) 前面的係數對時間複雜度沒有影響。
- 迴圈巢狀時使用乘法。總操作數量等於外層迴圈和內層迴圈操作數量之積,每一層迴圈依然可以分別套用第
1.
點和第2.
點的技巧。
給定一個函式,我們可以用上述技巧來統計操作數量:
以下公式展示了使用上述技巧前後的統計結果,兩者推算出的時間複雜度都為 \(O(n^2)\) 。
第二步:判斷漸近上界¶
時間複雜度由 \(T(n)\) 中最高階的項來決定。這是因為在 \(n\) 趨於無窮大時,最高階的項將發揮主導作用,其他項的影響都可以忽略。
下表展示了一些例子,其中一些誇張的值是為了強調“係數無法撼動階數”這一結論。當 \(n\) 趨於無窮大時,這些常數變得無足輕重。
表
操作數量 \(T(n)\) | 時間複雜度 \(O(f(n))\) |
---|---|
\(100000\) | \(O(1)\) |
\(3n + 2\) | \(O(n)\) |
\(2n^2 + 3n + 2\) | \(O(n^2)\) |
\(n^3 + 10000n^2\) | \(O(n^3)\) |
\(2^n + 10000n^{10000}\) | \(O(2^n)\) |
常見型別¶
設輸入資料大小為 \(n\) ,常見的時間複雜度型別如下圖所示(按照從低到高的順序排列)。
常數階 \(O(1)\)¶
常數階的操作數量與輸入資料大小 \(n\) 無關,即不隨著 \(n\) 的變化而變化。
在以下函式中,儘管操作數量 size
可能很大,但由於其與輸入資料大小 \(n\) 無關,因此時間複雜度仍為 \(O(1)\) :
線性階 \(O(n)\)¶
線性階的操作數量相對於輸入資料大小 \(n\) 以線性級別增長。線性階通常出現在單層迴圈中:
走訪陣列和走訪鏈結串列等操作的時間複雜度均為 \(O(n)\) ,其中 \(n\) 為陣列或鏈結串列的長度:
值得注意的是,輸入資料大小 \(n\) 需根據輸入資料的型別來具體確定。比如在第一個示例中,變數 \(n\) 為輸入資料大小;在第二個示例中,陣列長度 \(n\) 為資料大小。
平方階 \(O(n^2)\)¶
平方階的操作數量相對於輸入資料大小 \(n\) 以平方級別增長。平方階通常出現在巢狀迴圈中,外層迴圈和內層迴圈的時間複雜度都為 \(O(n)\) ,因此總體的時間複雜度為 \(O(n^2)\) :
下圖對比了常數階、線性階和平方階三種時間複雜度。
以泡沫排序為例,外層迴圈執行 \(n - 1\) 次,內層迴圈執行 \(n-1\)、\(n-2\)、\(\dots\)、\(2\)、\(1\) 次,平均為 \(n / 2\) 次,因此時間複雜度為 \(O((n - 1) n / 2) = O(n^2)\) :
指數階 \(O(2^n)\)¶
生物學的“細胞分裂”是指數階增長的典型例子:初始狀態為 \(1\) 個細胞,分裂一輪後變為 \(2\) 個,分裂兩輪後變為 \(4\) 個,以此類推,分裂 \(n\) 輪後有 \(2^n\) 個細胞。
下圖和以下程式碼模擬了細胞分裂的過程,時間複雜度為 \(O(2^n)\) :
在實際演算法中,指數階常出現於遞迴函式中。例如在以下程式碼中,其遞迴地一分為二,經過 \(n\) 次分裂後停止:
指數階增長非常迅速,在窮舉法(暴力搜尋、回溯等)中比較常見。對於資料規模較大的問題,指數階是不可接受的,通常需要使用動態規劃或貪婪演算法等來解決。
對數階 \(O(\log n)\)¶
與指數階相反,對數階反映了“每輪縮減到一半”的情況。設輸入資料大小為 \(n\) ,由於每輪縮減到一半,因此迴圈次數是 \(\log_2 n\) ,即 \(2^n\) 的反函式。
下圖和以下程式碼模擬了“每輪縮減到一半”的過程,時間複雜度為 \(O(\log_2 n)\) ,簡記為 \(O(\log n)\) :
與指數階類似,對數階也常出現於遞迴函式中。以下程式碼形成了一棵高度為 \(\log_2 n\) 的遞迴樹:
對數階常出現於基於分治策略的演算法中,體現了“一分為多”和“化繁為簡”的演算法思想。它增長緩慢,是僅次於常數階的理想的時間複雜度。
\(O(\log n)\) 的底數是多少?
準確來說,“一分為 \(m\)”對應的時間複雜度是 \(O(\log_m n)\) 。而透過對數換底公式,我們可以得到具有不同底數、相等的時間複雜度:
也就是說,底數 \(m\) 可以在不影響複雜度的前提下轉換。因此我們通常會省略底數 \(m\) ,將對數階直接記為 \(O(\log n)\) 。
線性對數階 \(O(n \log n)\)¶
線性對數階常出現於巢狀迴圈中,兩層迴圈的時間複雜度分別為 \(O(\log n)\) 和 \(O(n)\) 。相關程式碼如下:
下圖展示了線性對數階的生成方式。二元樹的每一層的操作總數都為 \(n\) ,樹共有 \(\log_2 n + 1\) 層,因此時間複雜度為 \(O(n \log n)\) 。
主流排序演算法的時間複雜度通常為 \(O(n \log n)\) ,例如快速排序、合併排序、堆積排序等。
階乘階 \(O(n!)\)¶
階乘階對應數學上的“全排列”問題。給定 \(n\) 個互不重複的元素,求其所有可能的排列方案,方案數量為:
階乘通常使用遞迴實現。如下圖和以下程式碼所示,第一層分裂出 \(n\) 個,第二層分裂出 \(n - 1\) 個,以此類推,直至第 \(n\) 層時停止分裂:
請注意,因為當 \(n \geq 4\) 時恆有 \(n! > 2^n\) ,所以階乘階比指數階增長得更快,在 \(n\) 較大時也是不可接受的。
最差、最佳、平均時間複雜度¶
演算法的時間效率往往不是固定的,而是與輸入資料的分佈有關。假設輸入一個長度為 \(n\) 的陣列 nums
,其中 nums
由從 \(1\) 至 \(n\) 的數字組成,每個數字只出現一次;但元素順序是隨機打亂的,任務目標是返回元素 \(1\) 的索引。我們可以得出以下結論。
- 當
nums = [?, ?, ..., 1]
,即當末尾元素是 \(1\) 時,需要完整走訪陣列,達到最差時間複雜度 \(O(n)\) 。 - 當
nums = [1, ?, ?, ...]
,即當首個元素為 \(1\) 時,無論陣列多長都不需要繼續走訪,達到最佳時間複雜度 \(\Omega(1)\) 。
“最差時間複雜度”對應函式漸近上界,使用大 \(O\) 記號表示。相應地,“最佳時間複雜度”對應函式漸近下界,用 \(\Omega\) 記號表示:
值得說明的是,我們在實際中很少使用最佳時間複雜度,因為通常只有在很小機率下才能達到,可能會帶來一定的誤導性。而最差時間複雜度更為實用,因為它給出了一個效率安全值,讓我們可以放心地使用演算法。
從上述示例可以看出,最差時間複雜度和最佳時間複雜度只出現於“特殊的資料分佈”,這些情況的出現機率可能很小,並不能真實地反映演算法執行效率。相比之下,平均時間複雜度可以體現演算法在隨機輸入資料下的執行效率,用 \(\Theta\) 記號來表示。
對於部分演算法,我們可以簡單地推算出隨機資料分佈下的平均情況。比如上述示例,由於輸入陣列是被打亂的,因此元素 \(1\) 出現在任意索引的機率都是相等的,那麼演算法的平均迴圈次數就是陣列長度的一半 \(n / 2\) ,平均時間複雜度為 \(\Theta(n / 2) = \Theta(n)\) 。
但對於較為複雜的演算法,計算平均時間複雜度往往比較困難,因為很難分析出在資料分佈下的整體數學期望。在這種情況下,我們通常使用最差時間複雜度作為演算法效率的評判標準。
為什麼很少看到 \(\Theta\) 符號?
可能由於 \(O\) 符號過於朗朗上口,因此我們常常使用它來表示平均時間複雜度。但從嚴格意義上講,這種做法並不規範。在本書和其他資料中,若遇到類似“平均時間複雜度 \(O(n)\)”的表述,請將其直接理解為 \(\Theta(n)\) 。