跳轉至

動態規劃解題思路

上兩節介紹了動態規劃問題的主要特徵,接下來我們一起探究兩個更加實用的問題。

  1. 如何判斷一個問題是不是動態規劃問題?
  2. 求解動態規劃問題該從何處入手,完整步驟是什麼?

問題判斷

總的來說,如果一個問題包含重疊子問題、最優子結構,並滿足無後效性,那麼它通常適合用動態規劃求解。然而,我們很難從問題描述中直接提取出這些特性。因此我們通常會放寬條件,先觀察問題是否適合使用回溯(窮舉)解決

適合用回溯解決的問題通常滿足“決策樹模型”,這種問題可以使用樹形結構來描述,其中每一個節點代表一個決策,每一條路徑代表一個決策序列。

換句話說,如果問題包含明確的決策概念,並且解是透過一系列決策產生的,那麼它就滿足決策樹模型,通常可以使用回溯來解決。

在此基礎上,動態規劃問題還有一些判斷的“加分項”。

  • 問題包含最大(小)或最多(少)等最最佳化描述。
  • 問題的狀態能夠使用一個串列、多維矩陣或樹來表示,並且一個狀態與其周圍的狀態存在遞推關係。

相應地,也存在一些“減分項”。

  • 問題的目標是找出所有可能的解決方案,而不是找出最優解。
  • 問題描述中有明顯的排列組合的特徵,需要返回具體的多個方案。

如果一個問題滿足決策樹模型,並具有較為明顯的“加分項”,我們就可以假設它是一個動態規劃問題,並在求解過程中驗證它。

問題求解步驟

動態規劃的解題流程會因問題的性質和難度而有所不同,但通常遵循以下步驟:描述決策,定義狀態,建立 \(dp\) 表,推導狀態轉移方程,確定邊界條件等。

為了更形象地展示解題步驟,我們使用一個經典問題“最小路徑和”來舉例。

Question

給定一個 \(n \times m\) 的二維網格 grid ,網格中的每個單元格包含一個非負整數,表示該單元格的代價。機器人以左上角單元格為起始點,每次只能向下或者向右移動一步,直至到達右下角單元格。請返回從左上角到右下角的最小路徑和。

下圖展示了一個例子,給定網格的最小路徑和為 \(13\)

最小路徑和示例資料

第一步:思考每輪的決策,定義狀態,從而得到 \(dp\)

本題的每一輪的決策就是從當前格子向下或向右走一步。設當前格子的行列索引為 \([i, j]\) ,則向下或向右走一步後,索引變為 \([i+1, j]\)\([i, j+1]\) 。因此,狀態應包含行索引和列索引兩個變數,記為 \([i, j]\)

狀態 \([i, j]\) 對應的子問題為:從起始點 \([0, 0]\) 走到 \([i, j]\) 的最小路徑和,解記為 \(dp[i, j]\)

至此,我們就得到了下圖所示的二維 \(dp\) 矩陣,其尺寸與輸入網格 \(grid\) 相同。

狀態定義與 dp 表

Note

動態規劃和回溯過程可以描述為一個決策序列,而狀態由所有決策變數構成。它應當包含描述解題進度的所有變數,其包含了足夠的資訊,能夠用來推導出下一個狀態。

每個狀態都對應一個子問題,我們會定義一個 \(dp\) 表來儲存所有子問題的解,狀態的每個獨立變數都是 \(dp\) 表的一個維度。從本質上看,\(dp\) 表是狀態和子問題的解之間的對映。

第二步:找出最優子結構,進而推導出狀態轉移方程

對於狀態 \([i, j]\) ,它只能從上邊格子 \([i-1, j]\) 和左邊格子 \([i, j-1]\) 轉移而來。因此最優子結構為:到達 \([i, j]\) 的最小路徑和由 \([i, j-1]\) 的最小路徑和與 \([i-1, j]\) 的最小路徑和中較小的那一個決定。

根據以上分析,可推出下圖所示的狀態轉移方程:

\[ dp[i, j] = \min(dp[i-1, j], dp[i, j-1]) + grid[i, j] \]

最優子結構與狀態轉移方程

Note

根據定義好的 \(dp\) 表,思考原問題和子問題的關係,找出透過子問題的最優解來構造原問題的最優解的方法,即最優子結構。

一旦我們找到了最優子結構,就可以使用它來構建出狀態轉移方程。

第三步:確定邊界條件和狀態轉移順序

在本題中,處在首行的狀態只能從其左邊的狀態得來,處在首列的狀態只能從其上邊的狀態得來,因此首行 \(i = 0\) 和首列 \(j = 0\) 是邊界條件。

如下圖所示,由於每個格子是由其左方格子和上方格子轉移而來,因此我們使用迴圈來走訪矩陣,外迴圈走訪各行,內迴圈走訪各列。

邊界條件與狀態轉移順序

Note

邊界條件在動態規劃中用於初始化 \(dp\) 表,在搜尋中用於剪枝。

狀態轉移順序的核心是要保證在計算當前問題的解時,所有它依賴的更小子問題的解都已經被正確地計算出來。

根據以上分析,我們已經可以直接寫出動態規劃程式碼。然而子問題分解是一種從頂至底的思想,因此按照“暴力搜尋 \(\rightarrow\) 記憶化搜尋 \(\rightarrow\) 動態規劃”的順序實現更加符合思維習慣。

方法一:暴力搜尋

從狀態 \([i, j]\) 開始搜尋,不斷分解為更小的狀態 \([i-1, j]\)\([i, j-1]\) ,遞迴函式包括以下要素。

  • 遞迴參數:狀態 \([i, j]\)
  • 返回值:從 \([0, 0]\)\([i, j]\) 的最小路徑和 \(dp[i, j]\)
  • 終止條件:當 \(i = 0\)\(j = 0\) 時,返回代價 \(grid[0, 0]\)
  • 剪枝:當 \(i < 0\) 時或 \(j < 0\) 時索引越界,此時返回代價 \(+\infty\) ,代表不可行。

實現程式碼如下:

[file]{min_path_sum}-[class]{}-[func]{min_path_sum_dfs}

下圖給出了以 \(dp[2, 1]\) 為根節點的遞迴樹,其中包含一些重疊子問題,其數量會隨著網格 grid 的尺寸變大而急劇增多。

從本質上看,造成重疊子問題的原因為:存在多條路徑可以從左上角到達某一單元格

暴力搜尋遞迴樹

每個狀態都有向下和向右兩種選擇,從左上角走到右下角總共需要 \(m + n - 2\) 步,所以最差時間複雜度為 \(O(2^{m + n})\) 。請注意,這種計算方式未考慮臨近網格邊界的情況,當到達網路邊界時只剩下一種選擇,因此實際的路徑數量會少一些。

方法二:記憶化搜尋

我們引入一個和網格 grid 相同尺寸的記憶串列 mem ,用於記錄各個子問題的解,並將重疊子問題進行剪枝:

[file]{min_path_sum}-[class]{}-[func]{min_path_sum_dfs_mem}

如下圖所示,在引入記憶化後,所有子問題的解只需計算一次,因此時間複雜度取決於狀態總數,即網格尺寸 \(O(nm)\)

記憶化搜尋遞迴樹

方法三:動態規劃

基於迭代實現動態規劃解法,程式碼如下所示:

[file]{min_path_sum}-[class]{}-[func]{min_path_sum_dp}

下圖展示了最小路徑和的狀態轉移過程,其走訪了整個網格,因此時間複雜度為 \(O(nm)\)

陣列 dp 大小為 \(n \times m\)因此空間複雜度為 \(O(nm)\)

最小路徑和的動態規劃過程

min_path_sum_dp_step2

min_path_sum_dp_step3

min_path_sum_dp_step4

min_path_sum_dp_step5

min_path_sum_dp_step6

min_path_sum_dp_step7

min_path_sum_dp_step8

min_path_sum_dp_step9

min_path_sum_dp_step10

min_path_sum_dp_step11

min_path_sum_dp_step12

空間最佳化

由於每個格子只與其左邊和上邊的格子有關,因此我們可以只用一個單行陣列來實現 \(dp\) 表。

請注意,因為陣列 dp 只能表示一行的狀態,所以我們無法提前初始化首列狀態,而是在走訪每行時更新它:

[file]{min_path_sum}-[class]{}-[func]{min_path_sum_dp_comp}