跳轉至

建堆積操作

在某些情況下,我們希望使用一個串列的所有元素來構建一個堆積,這個過程被稱為“建堆積操作”。

藉助入堆積操作實現

我們首先建立一個空堆積,然後走訪串列,依次對每個元素執行“入堆積操作”,即先將元素新增至堆積的尾部,再對該元素執行“從底至頂”堆積化。

每當一個元素入堆積,堆積的長度就加一。由於節點是從頂到底依次被新增進二元樹的,因此堆積是“自上而下”構建的。

設元素數量為 \(n\) ,每個元素的入堆積操作使用 \(O(\log{n})\) 時間,因此該建堆積方法的時間複雜度為 \(O(n \log n)\)

透過走訪堆積化實現

實際上,我們可以實現一種更為高效的建堆積方法,共分為兩步。

  1. 將串列所有元素原封不動地新增到堆積中,此時堆積的性質尚未得到滿足。
  2. 倒序走訪堆積(層序走訪的倒序),依次對每個非葉節點執行“從頂至底堆積化”。

每當堆積化一個節點後,以該節點為根節點的子樹就形成一個合法的子堆積。而由於是倒序走訪,因此堆積是“自下而上”構建的。

之所以選擇倒序走訪,是因為這樣能夠保證當前節點之下的子樹已經是合法的子堆積,這樣堆積化當前節點才是有效的。

值得說明的是,由於葉節點沒有子節點,因此它們天然就是合法的子堆積,無須堆積化。如以下程式碼所示,最後一個非葉節點是最後一個節點的父節點,我們從它開始倒序走訪並執行堆積化:

[file]{my_heap}-[class]{max_heap}-[func]{__init__}

複雜度分析

下面,我們來嘗試推算第二種建堆積方法的時間複雜度。

  • 假設完全二元樹的節點數量為 \(n\) ,則葉節點數量為 \((n + 1) / 2\) ,其中 \(/\) 為向下整除。因此需要堆積化的節點數量為 \((n - 1) / 2\)
  • 在從頂至底堆積化的過程中,每個節點最多堆積化到葉節點,因此最大迭代次數為二元樹高度 \(\log n\)

將上述兩者相乘,可得到建堆積過程的時間複雜度為 \(O(n \log n)\)但這個估算結果並不準確,因為我們沒有考慮到二元樹底層節點數量遠多於頂層節點的性質

接下來我們來進行更為準確的計算。為了降低計算難度,假設給定一個節點數量為 \(n\) 、高度為 \(h\) 的“完美二元樹”,該假設不會影響計算結果的正確性。

完美二元樹的各層節點數量

如上圖所示,節點“從頂至底堆積化”的最大迭代次數等於該節點到葉節點的距離,而該距離正是“節點高度”。因此,我們可以對各層的“節點數量 \(\times\) 節點高度”求和,得到所有節點的堆積化迭代次數的總和

\[ T(h) = 2^0h + 2^1(h-1) + 2^2(h-2) + \dots + 2^{(h-1)}\times1 \]

化簡上式需要藉助中學的數列知識,先將 \(T(h)\) 乘以 \(2\) ,得到:

\[ \begin{aligned} T(h) & = 2^0h + 2^1(h-1) + 2^2(h-2) + \dots + 2^{h-1}\times1 \newline 2 T(h) & = 2^1h + 2^2(h-1) + 2^3(h-2) + \dots + 2^{h}\times1 \newline \end{aligned} \]

使用錯位相減法,用下式 \(2 T(h)\) 減去上式 \(T(h)\) ,可得:

\[ 2T(h) - T(h) = T(h) = -2^0h + 2^1 + 2^2 + \dots + 2^{h-1} + 2^h \]

觀察上式,發現 \(T(h)\) 是一個等比數列,可直接使用求和公式,得到時間複雜度為:

\[ \begin{aligned} T(h) & = 2 \frac{1 - 2^h}{1 - 2} - h \newline & = 2^{h+1} - h - 2 \newline & = O(2^h) \end{aligned} \]

進一步,高度為 \(h\) 的完美二元樹的節點數量為 \(n = 2^{h+1} - 1\) ,易得複雜度為 \(O(2^h) = O(n)\) 。以上推算表明,輸入串列並建堆積的時間複雜度為 \(O(n)\) ,非常高效