跳轉至

二元樹走訪

從物理結構的角度來看,樹是一種基於鏈結串列的資料結構,因此其走訪方式是透過指標逐個訪問節點。然而,樹是一種非線性資料結構,這使得走訪樹比走訪鏈結串列更加複雜,需要藉助搜尋演算法來實現。

二元樹常見的走訪方式包括層序走訪、前序走訪、中序走訪和後序走訪等。

層序走訪

如下圖所示,層序走訪(level-order traversal)從頂部到底部逐層走訪二元樹,並在每一層按照從左到右的順序訪問節點。

層序走訪本質上屬於廣度優先走訪(breadth-first traversal),也稱廣度優先搜尋(breadth-first search, BFS),它體現了一種“一圈一圈向外擴展”的逐層走訪方式。

二元樹的層序走訪

程式碼實現

廣度優先走訪通常藉助“佇列”來實現。佇列遵循“先進先出”的規則,而廣度優先走訪則遵循“逐層推進”的規則,兩者背後的思想是一致的。實現程式碼如下:

[file]{binary_tree_bfs}-[class]{}-[func]{level_order}

複雜度分析

  • 時間複雜度為 \(O(n)\) :所有節點被訪問一次,使用 \(O(n)\) 時間,其中 \(n\) 為節點數量。
  • 空間複雜度為 \(O(n)\) :在最差情況下,即滿二元樹時,走訪到最底層之前,佇列中最多同時存在 \((n + 1) / 2\) 個節點,佔用 \(O(n)\) 空間。

前序、中序、後序走訪

相應地,前序、中序和後序走訪都屬於深度優先走訪(depth-first traversal),也稱深度優先搜尋(depth-first search, DFS),它體現了一種“先走到盡頭,再回溯繼續”的走訪方式。

下圖展示了對二元樹進行深度優先走訪的工作原理。深度優先走訪就像是繞著整棵二元樹的外圍“走”一圈,在每個節點都會遇到三個位置,分別對應前序走訪、中序走訪和後序走訪。

二元搜尋樹的前序、中序、後序走訪

程式碼實現

深度優先搜尋通常基於遞迴實現:

[file]{binary_tree_dfs}-[class]{}-[func]{post_order}

Tip

深度優先搜尋也可以基於迭代實現,有興趣的讀者可以自行研究。

下圖展示了前序走訪二元樹的遞迴過程,其可分為“遞”和“迴”兩個逆向的部分。

  1. “遞”表示開啟新方法,程式在此過程中訪問下一個節點。
  2. “迴”表示函式返回,代表當前節點已經訪問完畢。

前序走訪的遞迴過程

preorder_step2

preorder_step3

preorder_step4

preorder_step5

preorder_step6

preorder_step7

preorder_step8

preorder_step9

preorder_step10

preorder_step11

複雜度分析

  • 時間複雜度為 \(O(n)\) :所有節點被訪問一次,使用 \(O(n)\) 時間。
  • 空間複雜度為 \(O(n)\) :在最差情況下,即樹退化為鏈結串列時,遞迴深度達到 \(n\) ,系統佔用 \(O(n)\) 堆疊幀空間。